
1

SOMATOPIA



2

Contents

3 Introduction

5 Quick Start

9 Worksheet One: Setting Up Your Pi

 10  Build
 11 Step 1 – ‘NOOBS’ Software
  Step 2 – Setting Up The Hardware

 13 Operate
  Step 3 – Operating The Pi
 14 Step 4 – Connecting To The Internet
 15 Step 5 – Installing Somatopia

18 Worksheet Two: Playing With Somatopia

 19 Play
 22 Making Simple Changes To Sound Wheel
 23 Taking A Picture With Your Camera

24 Worksheet Three: How It’s Made, Introduction To openFrameworks
 
 35 Changing The Circle’s Color
 36 Making The Circle Move
 37 Making The Circle Come Back

38 Worksheet Four: Extending Somatopia: An Intro To Object  
 Oriented Programming
 
 39 Using Addons With openFrameworks 
 43 Using Object Oriented Programming With C++



3

Introduction



4

This is an introduction to Somatopia, which 
is being developed in partnership with 
Cariad Interactive, Raspberry Pi, and Cardiff 
Metropolitan University, together with 
special schools and arts organisations. 

The aim of Somatopia is to use the RPi to 
enable young people to create interactions 
that respond to sound and movement.



5

Quick Start



6

Launching Somatopia from the Raspberry Pi desktop.

1. Double click on the Somatopia folder
2. Double click on the Somatopia icon
3. Select “Open in Terminal”. Lines of code will appear, then the 

Somatopia interface will launch with a choice of applications, 
Sound Wheel, Flow, Call and Response, Space. You will also see 
an Options button on the top left. 

4. Go ahead and select an application, then return to the 
Somatopia interface, press the ‘S’ key.

5. Options will enable you to take your own pictures and to choose 
video on or off. If you are using Somatopia to take a picture you 
will need to quit out of Somatopia to add your image (explained 
below).

6. To quit, press ESC.

Making Simple Changes To Sound Wheel 

You may be interested in modifying some aspects of the Somatopia 
app, which we encourage you to try! With the downloaded version 
from the Internet you won’t be able to change any of the code, but 
you will be able to make some easy customisations by adding the 
names and portraits in the ‘SoundWheel’ interactions. 

To do this, open the ‘data’ folder inside the Somatopia folder. Inside 
there will be several files but the ones we care about are Users.json 
and the Portraits folder. To change names and add portraits you 
need to make small edits to the text in the Users.json file. JSON is a 
way of structuring files so a computer can easily read them. In this 
file we already have a list of users with names, colours and shapes. 
You can modify the name, colour and shape associated with any 
user by simply changing the name with a text editor. 

Open the Users.json file by double-clicking on it and try changing 
the first name to your name by replacing the word ‘Placeholder1’ 
with your name (in quotation marks). The next time you open the 
application you’ll see your name come up as the first member in 
sound wheel! 

To modify colours and / or shapes you can do the same thing as 
modifying the names. Simply replace the colour and / or shape by 
selecting alternatives from the following list – do make sure that the 
spelling is exactly the same as written here: 

Colours: orange, red, yellow, light blue, green, dark blue, blue, 
purple, white, grey, pink. 

Quick Start



7

Shapes: circle, cross, heart, hexagon, square, triangle, asterix. 

You can also add images, so that it appears within the shape. 
To do this you need to add your own .jpg file to the ‘Portraits’ 
folder. When you edit the text in the Users.json file it must be 
exactly the same as the .jpg name. 

For example if I’d like to add Alex.jpg, I will change the JSON 
file so it looks like this: 

{‘Users’:[

{ ‘name’: ‘Alex’, ‘color’: ‘red’, ‘shape’: ‘square’ } ]} 

You can copy and paste this line of code as many times as you 
need to for all the names / colours / shapes you wish to include, 
remember to add a comma at the end of each line, but not 
the final line. For example...

{"Users":[

{ "name": "James", "color": "red", "shape": "square" },

{ "name": "Joel", "color": "pink", "shape": "heart"},

{ "name": "Wendy", "color": "green", "shape": "triangle"}

]}

Making sure that there is a corresponding image in the 
portraits folder, for example: Alex.jpg. When you run this in 
Somatopia, the .jpg image of Alex will appear on the screen 
inside the shape. 

The simplest way to put a .jpg in the portraits folder is to use 
your Pi Camera as it is already set up for Somatopia. We will 
explain how to do this, however, if you would prefer to source 
your images from an external file, i.e USB or from the Internet, 
check the Raspberry Pi guides (link). Once your file is on the Pi 
and saved as a .jpg, you can add it to Somatopia by following 
the same steps. 

Quick Start



8

Taking A Picture With Your Camera 

You can also take a picture within the Soamtopia app itself! 
Go to the options page and you'll see a live feed from the Pi 
cam in the bottom left corner along with some controls and 
black and white "background image". To take a photo press 
the check mark next to the words entitled "Save Your Portrait!" 
to take a snap-shot of the image you see in the bottom left. 
this will automatically save an image to the portraits folder 
entitled "image[Date].jpg" where the [Date] is the date and 
time that you took the image. To use it simply go into the data/
portraits folder and rename this image to the name of the 
person you'd like to associate it with. In the example above our 
user is named Alex so we'd want to name his / her image  
"Alex.jpg".

Once you've renamed the file open up the app again and 
head over to sound wheel. When you reach that name their 
image should pop right up inside of their favorite shape!

Quick Start



9

Worksheet One
Setting Up Your Pi



10

Build:

We’ll start by putting together the Raspberry Pi! There are 
several ingredients you’ll need to bake your Pi to run with 
Somatopia and openFrameworks.

You will need the following items:

1 fi RPi 2 Model B
1 fi WiFi dongle
1 fi Mouse
1 fi Keyboard
1 fi PiCam
1 fi Microphone
1 fi USB sound card
1 fi Display with HDMI port
1 fi HDMI cable
1 fi microSD card Class 10 at least 8 GB
1 fi microUSB power supply

Once you have those to hand you can begin putting your  
Pi together! 

Worksheet One – Build



11

Step 1 – ‘NOOBS’ Software:

Your Pi may have been shipped with a ‘NOOBS’ card, which will 
have the RPi logo on it. If you have this you can jump to ‘Step 
2 – Setting Up The Hardware.’ If not you will need to download 
the code that runs the Raspberry Pi onto your blank SD card. 
This software is called ‘NOOBS’ and you can download it from 
this link:
 
https://www.Raspberrypi.org/downloads/

When you have downloaded ‘NOOBS’ onto your computer, you 
can follow the instructions here to install it onto your SD card:
 
http://eLinux.org/RPi_Easy_SD_Card_Setup

Once you’ve installed it you can plug the SD card into the Pi.

Step 2 – Setting Up The Hardware:

Next we’ll need to attach the camera. The PiCam connects  
to the Pi on the top of the device as illustrated in the images 
below. Open the clip by placing a finger on each side length-
ways and gently pulling upwards. It should pop open but stay 
attached to the Pi. Insert the strip connected to the PiCam with 
the blue strip facing towards to the USB ports on the Pi. Ensure 
that the blue strip is flat and close the clip by gently pushing it 
back into place and waiting for it to click.

Once the PiCam is in place the rest is quite simple. Attach the 
microphone to the port on the USB sound card, this can then 
be inserted into one of the four USB ports, along with the other 
USB devices: mouse, keyboard, WiFi dongle. Attach the HDMI 
cable to the HDMI port, which sits next to the camera port. 

Worksheet One – Build



12

Finally, attach the power cable to the wall and plug it in to the 
micro-USB power port next to the HDMI port. Once the power 
is connected you should see a solid red light and a flickering 
green light near the SD card slot, which indicate your Pi is on! 
You should also see some scrolling text on your monitor with 
the RPi logo on the top left corner.

Worksheet One – Build



13

Operate:

Step 3 – Operating The Pi:

Your Raspberry Pi logo will appear on the top left corner of 
your monitor; the text scrolling up the screen is normal and will 
happen every time you boot up the Pi.

If this is the first time using your Raspberry Pi you’ll reach a 
screen called ‘raspi-config’, which looks like this:

This is an application that comes standard with your installation 
of NOOBS; it allows you to change the settings on the 
Raspberry Pi. The row highlighted in red is the currently selected 
option and you can navigate through the options using the 
arrow keys to move the selection and the Return / Enter key to 
interact with the selection.

To start using Somatopia and openFrameworks you will need to 
set several settings in this screen which will be described below, 
however if you want to just start using your Pi, go ahead and 
navigate to <finish> and press Enter to quit the ‘raspi-config’ 
application. To do this use the left and right arrow keys to 
navigate to the bottom of the list of settings and press Enter /
Return when you’ve selected finish. You can return to this screen 
any time from the Terminal by typing ‘sudo raspi-config’ and 
pressing Enter / Return.

You should now see some green text with a blue dollar sign 
next to it and a blinking cursor at the bottom of your screen. 

Worksheet One – Operate



14

This is the Terminal and will allow you to control the computer 
using text commands. If you type a command and press Enter 
the computer will try to execute the command you input.

Try it now by typing ‘hostname -I’ This is a command that prints 
out the IP address of your RPi on the current network. There is 
no network connection currently so you should just see a blank 
line and then another blinking cursor next to a blue dollar sign 
waiting for your next command. There are many commands you 
can send your computer via the Terminal, you can even use 
your computer with all its functionality from the Terminal alone! 
 
We’ll use some commands later but for now we’ll go to a more 
familiar screen by typing ‘startx’ and pressing Enter to bring up 
the desktop.

Now you have a mouse cursor and can see a few buttons.  
This is called a ‘GUI’ or ‘Graphic User Interface’ and all modern 
computers have one. You are now looking at your desktop.

Step 4 – Connecting To The Internet:

The next thing you need to do is connect to the Internet. Go to 
the top left corner and click on the menu button, next navigate 
to preferences. Select WiFi Configuration from the dropdown 
menu. First ensure your WiFi dongle is securely plugged in to a 
USB port and select Scan in the bottom right corner of the 
window. Press Scan again and this will display a list of networks 
that your RPi can join. Double click the network you would like 
to join and enter any information required, such as your 
password and press ‘Add’ at the bottom of the window. It may 

Worksheet One – Operate



15

take a few seconds to connect. Depending on the model, your 
WiFi dongle will usually show some kind of indication that it is 
on. Mine shows a blue light, as shown below: 

You can check your Internet connection by opening the web 
browser. Click on the cursor and globe at the top left of the 
screen and try typing in any website. I use www.google.com  
to test my connection. If it loads you’re connected!

Step 5 – Installing Somatopia:

Now that we are connected to the Internet we can go ahead 
and download the software we’ll need to get started with 
openFrameworks and Somatopia. First however, we’ll need to 
change some settings so that the computer is ready to run 
these applications. Here we’ll be returning to the Terminal from 
before and re-opening ‘raspi-config’.

In the top left corner there are several icons, one of which looks 
like a black computer screen. Click that icon to open a 
windowed version of the Terminal. Look familiar? That’s because 
it’s the same! The program you’ve just opened is a way of 
accessing the Terminal within the graphic user interface, which 
is very useful!

You can type directly into the Terminal here. Start by typing 
‘hostname -I’ and pressing Enter. The last time we did this we 
printed a blank line, now you should see an IP address if you’re 
connected to the Internet. Great! You’ve just executed your first 
successful Terminal prompt!

Worksheet One – Operate



16

Now we’d like to re-open the ‘raspi-config’ app and change 
some settings. Type ‘sudo raspi-config’ into the Terminal and 
[wait to] press Enter / Return. When we press Enter / Return this 
command will re-open the config menu for the RPi within the 
Terminal window. As a quick aside, let’s discuss this command 
you just entered. There were two parts to it ‘sudo’ and ‘raspi-
config’. The second part ‘raspi-config’ is the command you 
need to open this menu; however, typing it alone would 
produce an error ( you may try it if you are curious ). The ‘sudo’ 
part is required for certain commands that the computer deems 
more important than others. Typing ‘sudo’ allows you to edit 
files and open applications that most users would not have 
permission to edit. Using ‘sudo’ allows you access to lots of 
things on your computer you normally wouldn’t have access to. 
However, with great power comes great responsibility, so if you 
find yourself using the ‘sudo’ command make sure you 
understand what you’re doing! For openFrameworks and 
Somatopia you will rarely need to use it so don’t worry! 

Now you can go ahead and enter the command ‘sudo raspi-
config’ and press Enter. The first thing you’ll need to do is 
Expand the Filesystem. Select Expand the Filesystem (Option 1) 
and press Enter. If you are using ‘NOOBS’ you may already 
have the file system expanded and you will be told this. You 
may also change the user password. The default password is 
‘raspberry’, however you can change it to whatever you. Option 
5 is entitled Enable Camera, which we will need to do to run 
Somatopia. Go ahead and press Enter when Enable Camera is 
selected - use the left and right arrows to select. When you 
press Enter you’ll be brought back to the ‘raspi-config’ page. 
The last thing we’ll need to do is go to Option 8 ‘Advanced 

Worksheet One – Operate



17

Options’. Enter the Advanced Options menu and select A3 
Memory Split. Your default value here is usually 128 or 64 but 
we want it to be 256 (double 128). Change the value using the 
keyboard and double-check that it is correct then press ok. 

Ok we’re all done! Go ahead and select <Finish> and you’ll be 
asked if you’d like to reboot. Reboot in order for the changes 
you made to take effect.

Now we’re cooking with gas! Once your RPi boots back up 
you’ll have the same code you saw before but we won’t be 
brought back to the rasp-config window. Instead you’ll be 
asked to log in. 

The default username is ‘pi’ and the default password is 
‘raspberry’ (unless you changed it in the last step). Enter the 
username and press Enter then enter the password and press 
Enter (the password will not show up when you enter it, it will 
look as if you are typing nothing but it’s just a security measure 
so people can’t read your password over your shoulder! You 
are actually typing). Once you’re logged in you’ll again be 
presented with the Terminal. Go ahead and enter the command 
‘startx’ again to open the GUI. You can set the GUI to open 
automatically every time you turn on your Pi by following an 
online guide, for now, logging in and executing startx is the 
procedure you’ll follow every time you want to use your Pi.

From here we are ready to begin working with openFrameworks 
and Somatopia!

Worksheet One – Operate



18

Worksheet Two
Playing With Somatopia



19

Play:

If you just want to start playing with Somatopia you can 
download the package from our website. Ensure you are 
connected to the Internet by opening up another Terminal 
window and executing the command ‘hostname -I’ if you see 
an IP address pop up you’re good to go!
 
If not go back to the WiFi configuration window and make sure 
you have everything set up correctly before proceeding. Once 
you download the folder place it on the Desktop from the 
downloads folder. In order to run the application you’ll need to 
install some files that allow it to run called ‘dependencies’. Lucky 
for you we’ve made a program known as a ‘script’ that will do 
this for you!
 
As a quick aside for those interested, ‘scripts’ are programs that 
execute commands in the Terminal automatically, so if you 
wanted to check what your IP address was and start the GUI 
you could write a ‘script’ that executed both of those commands 
so next time you want to do that, you can simply execute the 
script instead of executing the two separate commands.
 

First of all let’s have a look at what we’re actually doing, on the 
top left of the screen there is an icon next to the Internet icon, 
which looks like a filing cabinet. If you open it up you’ll open a 
file explorer window much like the one you have on a Mac or a 
PC. At the left of the window you’ll see a list of folders and on 
the top you’ll see a folder icon with the words /home/Pi written 
next to them in a clickable box.

Worksheet Two – Play



20

Navigate to where you saved the downloaded Somatopia file 
and open it. There will be 5 objects inside, two folders: one 
script called ‘install_dependencies.sh’ and a file called 
‘readMe.txt’ as well as an executable file entitled ‘Somatopia’.
 
We want to run the ‘install_dependencies.sh’ script but we’ll 
need special permission to do so, so we’ll need to use the ‘sudo’ 
command again in the Terminal. Use the Terminal window you 
already have open (or open a new one) and execute the 
following command ‘cd’; ‘cd’ is a command we will use a little bit 
in this setup guide but you’ll use it a lot if you want to do more 
programming, ‘cd’ stands for ‘change directory’ and is used to 
navigate your computers file system.

If you want to open a folder (known as a directory to 
programmers) all you need to do is type ‘cd nameOfDirectory’ 
and you’ll be there within the Terminal. At the top of the file 
explorer window that you opened you’ll see a string of text 
describing where in the filesystem you are. It’s like an address,  
it tells you what folder you are in and which folder that folder is 
in etc. until it gets to the largest folder home, mine says ‘/home/
pi/Desktop/Somatopia’ because my Somatopia folder is on  
the desktop.

We want to execute the ‘install_dependencies.sh’ script in 
Terminal but we need to tell the Terminal we here to look for it. 
To do that we’ll use the ‘cd’ command: type ‘cd’ and then a 
space into the Terminal window then copy and paste the string 
of character in the top of the file explorer into the Terminal. 
Once that’s done press enter and the file path you entered 
should appear in blue to the right of the blue dollar sign in  

Worksheet Two – Play



21

the Terminal. This means you are in the directory inside the 
Terminal and the computer knows where to look for the script 
titled install_dependencies.sh. 

Now to run the script you’ll need to type ‘sudo ./install_
dependencies.sh’ which will run the script and install all of the 
stuff you’ll need to run Somatopia. The Terminal will stop twice 
and ask you to confirm that you want to install certain things. 
Just type ‘Y’ for yes and press enter each time it asks you and 
you’ll know it’s done when the blue dollar sign shows up again.
 
Now you’re ready to play with Somatopia! Simply clicking on 
the icon entitled ‘Somatopia’ will launch the application.

Have fun!

Worksheet Two – Play



22

Making Simple Changes To Sound Wheel
 
You may be interested in modifying some aspects of the 
Somatopia app, which we encourage you to try! With the 
downloaded version from the Internet you won’t be able to 
change any of the code, but you will be able to make some 
easy customisations by adding the names and portraits in the 
‘SoundWheel’ interactions.
 
To do this, open the ‘data’ folder inside the Somatopia folder. 
Inside there will be several files but the ones we care about are 
Users.json and the Portraits folder. To change names and add 
portraits you need to make small edits to the text in the  
Users.json file. JSON is a way of structuring files so a computer 
can easily read them. In this file we already have a list of users 
with names, colours and shapes. You can modify the name, 
colour and shape associated with any user by simply changing 
the name with a text editor. Open the Users.json file by double-
clicking on it and try changing the first name to your name by 
replacing the word ‘Placeholder1’ with your name (in quotation 
marks). The next time you open the application you’ll see your 
name come up as the first member in sound wheel!

To modify colours and  / or shapes you can do the same thing as 
modifying the names. Simply replace the colour and  / or shape 
by selecting alternatives from the following list – do make sure 
that the spelling is exactly the same as written here:
 
Colours: orange, red, yellow, light blue, green, dark blue, blue, 
purple, white, grey, pink.
 
Shapes: circle, cross, heart, hexagon, square, triangle, asterix.
 
You can also add images, so that it appears within the shape. 
To do this you need to add your own .jpg file to the ‘Portraits’ 
folder. When you edit the text in the Users.json file it must be 
exactly the same as the .jpg name.
 
For example if I’d like to add Alex.jpg, I will change the JSON 
file so it looks like this: 
 
{‘Users’:[

{ ‘name’: ‘Alex’, ‘color’: ‘red’, ‘shape’: ‘square’ }

]}

 
Making sure that there is a corresponding image in the 
portraits folder, for example: Alex.jpg. When you run this in 
Somatopia, the .jpg image of Alex will appear on the screen 
inside the shape.

Worksheet Two – Play



23

The simplest way to put a .jpg in the portraits folder is to use 
your Pi Camera as it is already set up for Somatopia. We will 
explain how to do this, however, if you would prefer to source 
your images from an external file, i.e USB or from the Internet, 
check the Raspberry Pi guides (link). Once your file is on the Pi 
and saved as a .jpg, you can add it to Somatopia by following 
the same steps.

Taking A Picture With Your Camera
 
You can also take a picture within the Somatopia app itself!  
Go to the options page and you'll see a live feed from the Pi 
cam in the bottom left corner along with some controls and 
black and white "background image". To take a photo press  
the check mark next to the words entitled "Save Your Portrait!" 
to take a snap-shot of the image you see in the bottom left. this 
will automatically save an image to the portraits folder entitled 
"image[Date].jpg" where the [Date] is the date and time that 
you took the image. To use it simply go into the data/portraits 
folder and rename this image to the name of the person you'd 
like to associate it with. In the example above our user is 
named Alex so we'd want to name his/her image "Alex.jpg".

Once you'd renamed the file open up the app again and head 
over to sound wheel. When you reach that name their image 
should pop right up inside of their favorite shape!

Worksheet Two – Play



24

Worksheet Three
How It’s Made, Introduction 
To openFrameworks 



25

Now that you’ve had a play around with Somatopia, the more 
technically minded people may be thinking ‘How did they 

make this? ’. Well you’re in luck, that’s exactly what we’re going 
to talk about next!

We build Somatopia using openFrameworks, a wonderful 
framework for writing code that lets you do all sorts of great stuff 
really simply. You can check out the website at: 
 
http://openFrameworks.cc.

In this worksheet we’ll be downloading openFrameworks for our 
Raspberry Pi and building our first few apps!

To download the newest version of openFrameworks for your 
RPi you’ll want to follow the guide they provide here:

You can skip all the way to Step 6 because we’ve already done 
a lot of the setup. This guide assumes you have a Terminal 
(command line) open and you can simply copy-paste the 
commands directly into the Terminal. It glosses over a few finer 
points of the commands but just trust it for now and we’ll clear 
things up in a bit. Step 10 may look a little scary but just copy 
and paste the command into the Terminal and execute it, we’ll 
talk about it later.

Once you’ve reached the end of the setup guide you should 
have some awesome 3D shapes rotating around on the screen. 
Isn’t openFrameworks awesome! Hell yeah!

Now that you’ve got openFrameworks setup we’ll look at what 
we did. Steps 6, 7 and 8 of the openFrameworks guide just 
involved downloading and unpacking a files that 
openFrameworks includes. ‘curl’ is a download command and 
‘tar’ is an unpack command (just like unzipping a compressed 
file). In Step 9 you installed the same dependencies that we 
installed before to run the Somatopia app. If there were any 
changes to those dependencies then they are all now updated, 
otherwise this step just checked to make sure there were no 
updates. In Step 10 we had to make sure our system was set 
up to work on the RPi 2 instead of the RPi 1 which 
openFrameworks was originally built to work on. We don’t want 
to have to do this same command EVERY time we open a new 
Terminal window, that would be tedious so instead we’ll add it 
to our .profile file which is executed every time we open a new 
Terminal. This makes the process automatic. Files with a . in front 

Worksheet Three – How It's Made

http://forum.openFrameworks.cc/t/Raspberry-pi-2-setup-guide/18690



26

of them are ‘hidden’ from the user which means that in order to 
see them you need to right click on the file explorer and select 
‘Show Hidden’. You can edit the .profile file by going to /home/
pi/.profile and opening it up in a text editor or you can use the 
Terminal executing the following commands:

cd

nano .profile

‘nano’ is a command that open a text editor inside the Terminal, 
your Terminal will now be replaced by a text editor that you 
can navigate with the arrow keys (but not by clicking).

Scroll down to the bottom of the file the arrow keys and paste 
the line:

export MAKEFLAGS=-j4 PLATFORM_VARIANT=RPi2

at the bottom now your system will be ready to go every time 
you open a new Terminal window.

Step 11 asks you to compile an example, if the word ‘compile’ 
means nothing to you then read on! Compiling is basically 
translating code you write into code the computer can read.  
As you probably have heard computers can only read 1’s and 
0’s but programmers write in English! Cody English, but English 
all the same. We use letters and words and all sorts of symbols 
that make it easier for us to work on code. If coders wrote in  
1’s and 0’s all the time we’d never get anywhere so we invent 
languages and translate the 1’s and 0’s into words and symbols 
that we can read. 

These languages are called ‘abstractions’ and while they are 
great for us computers still live in 1 and 0 land so before we 
run any code on a computer we need to translate it back into 
1’s and 0’s otherwise known as ‘machine code’. That translating 
into 1’s and 0’s we call ‘compiling’.

With that in mind, Step 11 just takes one of the example 
projects you downloaded with openFrameworks and translates 
it into machine code so the machine can run it. The other 
important thing which will use again that is introduced in  
Step 10 is the command ‘make’ this command might as well say 
‘compile’ and you use it to compile your code. Step 12 makes 
your program run using the command ‘make run’ which starts 
up your program!

Worksheet Three – How It's Made



27

Ok now that we’ve clarified a little bit about compiling and 
we’ve got openFrameworks up and running we can go ahead 
and take a look at openFrameworks as a whole. Open up the 
openFrameworks folder and have a look at the file structure. 
There are a bunch of folders but the one we care about for 
now is apps. Apps stands for applications and this is where we 
will keep all our work. Opening up the apps folder you’ll find 
another folder entitled myApps and inside that you’ll see a file 
called emptyExample. Go ahead and open that folder. 

Inside this folder there is a Makefile a folder entitled ‘src’ and  
a file called config.make. Remember when we used the make 
command before to compile an example project? The Makefile 
in this folder is the file that tells the compiler exactly what 
needs to be done (makes sense when you think about, a 
Makefile controls the make command!). When you type the 
command ‘make’ into the Terminal and execute it the compiler 
looks in your current directory in the Terminal to find a Makefile. 
If it finds one it will try to compile the project according to the 
rules in the makefile and if it doesn’t it will yell at you! For this 
reason if we want to compile and run this empty example we 
need to navigate via the Terminal to this folder. Once again we 
can copy the file path at the top of the file explorer and type 
‘cd’ (don’t forget the space) into the Terminal and paste the file 
path after it. Then execute the command to navigate to that 
file. Now let’s take the time to learn a new Terminal command 
‘ls’. Try it now typing ‘ls’ into the Terminal and pressing enter. 
You should see a list of all the files and folders in the current 
directory which include the Makefile, the src folder and a few 
other files. That’s what the ‘ls’ command does! It lists all the 
files and folders in the current directory. If this is the case then 

Worksheet Three – How It's Made



28

we’re in the correct folder we can now type ‘make’ to compile 
this empty example! Once it’s done compiling and you’ve got 
the command line back you can type ‘make run’ to run  
the example. 

If you see a grey screen, don’t worry you’re doing it right!  
The empty Example is the most basic openFrameworks app 
possible and it does nothing, now we can add some of our 
code to the empty example and get it doing some fun stuff! 
You can close the empty example app by pressing escape.

We want to keep this empty example folder unchanged so that 
we can copy it and use it as a starting point for all our projects, 
so we’ll go back to the file explorer and copy paste the folder. 
It will ask you to add a new name and you can name it 
whatever you like, I named mine ‘myFirstApp’. In the Terminal 
let’s navigate to our new folder by typing ‘cd ..’ here the ..  
tells ‘cd’ to move back one folder. Then type ‘cd myFirstApp’  
(or whatever yours is called) to enter the folder. Just to test 
again execute the command ‘make’ then execute ‘make run’ 
once it’s finished and you should have another grey window! 
Great, now exit the app by pressing escape and let’s have 
some fun!

Open the src folder. This folder is the foler in which we are 
going to be making all of our changes. It’s worth taking a 
moment now to talk about what language we’ll be writting our 
code in. You’ve probably heard of ‘programming languages’ 
and there are many out there. Some of the most famous 
include Java, Javascript, Python, HTML, CSS, C, and C++. All 
programming languages are a little different and have 
different strengths and weaknesses. openFrameworks is written 
specifically in C++ so that is what we will be working with. 
C is one of the most basic programming languages out there 
and C++ is the upgraded version of C with a few extra bits.  
For the purposes of this tutorial, we’ll only be using features of 
C so when you tell people ‘I’m an epically good C++ 
programmer using openFrameworks’ you’ll be correct but 
basically you will have only used the C part of C++. This is a 
great place to start!

Worksheet Three – How It's Made



29

Now if we look into the folder entitled src we see three files 
one entitled main.cpp, ofApp.cpp and ofApp.h. Let’s quickly 
describe what each of these files does. Firstly let’s describe the 
extensions .cpp means it’s a C++ file and .h means it’s a header 
file. Header files are like tables of contents for .cpp files, they 
include a bit of information about all the things that .cpp file 
has in it and what it can do. .cpp files hold all of the actual 
computations and operations that make the program run!  
We use .h files so if you want to open a new project that 
someone else has worked on you can look at their .h files for  
a general overview of what they did without having to read 
through all the nitty-gritty technical stuff. 

ofApp refers to openFrameworksApp, so the ofApp.cpp file 
contains all the computations that our openFrameworks app 
will do and the ofApp.h file is a table a content of all the 
functionality of openFrameworksApp will have. The main.cpp 
file is the most important file in the whole project which we’ll 
explain in a minute. This is the file that allows us to run the 
application in C++. Go ahead and open up the main.cpp file. 
Here there are 5 lines of code that start our project running. 

Worksheet Three – How It's Made



30

Computers are very complicated machines but they think very 
simply. The computer goes down this code one line at a time 
and executes whatever the line tells it to do. For that reason 
we’ll look through the lines of this file one at a time to discuss 
some of the basic concepts of C++ programming then we’ll 
jump into making our own changes.

The first two lines are called includes. Includes allow us to 
connect multiple files to each other. If we didn’t have #include 
lines then we’d need to write all our code into one long file, 
instead we can write stuff into separate files which we #include 
in other files to keep our work organized.

The first line includes the file ofMain.h, this is the line that makes 
your project an openFrameworks project rather than just a 
normal C++ project, it gives you all the functionality that 
openFrameworks offers like nice drawing, text rendering, image 
rendering, sound processing etc. If you didn’t have this line and 
you wanted to say, draw a circle, you would need to write all 
the code to do that yourself! What openFrameworks gives us  
is a bunch of helpful tools that allow us to do these tricky things 
really simply because someone in the openFrameworks 
community has already written that tricky code. The next line  
is #include ‘ofApp.h’, this line simply includes all the code that 
we are about to write. We are going to modify the contents of 
ofApp.cpp which is included in ofApp.h (you’ll see the #include 
‘ofApp.h’ line is the first line inside the ofApp.cpp file when we 
look at that file later). So to quickly recap, the first two things 
we’ve done in our project are include all the powerful tools 
openFrameworks offers to our project and connect our app  
to our project.

Worksheet Three – How It's Made



31

The next line looks like this:

//======================================================

Now you may be thinking ‘what the heck does this mean?! 
Does this long string of = signs mean anything to the computer?!’. 
The answer is, perhaps surprisingly, no! This line is called a 
comment and is never ever read by the computer, it only exists 
to help humans reading the code understand it better! Any line 
of code with a double / in front of it i.e. ‘// Hello’ this is a 
comment and will never be read by the computer. There are a 
few more lines like this in this file. Computers read one line at a 
time and the system is set up such that if it ever encounters a 
double / then it will just skip over everything written on the rest 
of that line. So often if you have some complicated line of code 
you’ll write comments in plain English around it to clarify what 
exactly is going on. In this case, the comment is there just for 
visual clarity, like drawing a big line between two parts of your 
notes in a school-notebook.

The next line is the following:

int main ( ) {

This is called a function declaration. Functions are very useful 
things that exist in computer programming which allow you to 
package up functionality into little pieces to be used over and 
over again. Say you wanted to draw ten circles on the screen, 
instead of writting all the code required to draw a circle ten 
times, you could write the code once as a function called 
‘drawCircle()’ then just call ‘drawCircle()’ 10 times. This makes 
code much easier to read and more compact. Let’s look 
through this line at the different pieces of the code: firstly there 
is the word ‘int’. You’ll see this word a lot and it’s a shortening 
of the ‘integer’. Integers are whole numbers (0, 1, -3, 8 etc.) 0.5 
is not an integer because it’s not a whole number! We’ll use this 
word a lot but here it is used to describe the ‘return type’ of the 
function ‘main’. The return type is what a function gives us back, 
i.e. if you want a function that adds two numbers together you’ll 
want that function to give you back (i.e. return) another number 
which is the sum of the two you put in. In this case we want our 
main function to return an integer that describes whether or 
not it’s run correctly. This is a standard part of all C++ programs, 
that they have a function called main that returns an int. The 
next word ‘main’ is the name of the function. In general we can 
name functions anything we want, except in this specific case. 
Every C and C++ program ever written has a function called 
‘main’ that must return an ‘int’, it ’s the function that runs 

Worksheet Three – How It's Made



32

EVERYTHING. The next bits are parentheses which follow every 
function and denote it as a function. The final character is a 
curly brace ‘{’. After each function their are a pair of curly 
braces ‘{ }’ where you put all the functionality of the functions 
(if you scroll down to the bottom of the file you’ll see a closing 
curly brace. This is called ‘scope’ and it denotes what operations 
are in which functions, when you call a function your function 
does whatever you’ve written in between the curly braces.

The next few lines are comments and functions that are called 
inside of the main function. Basically they set up the windows 
that our app will live in and start our app running! For now let’s 
pass over these functions. Close the main.cpp file and have a 
look at the ofApp.cpp file. 

This is where all the magic happens! Let’s pause here and talk 
a bit about what we’d like to do. The main strength of 
openFrameworks is that it allows you do draw things on the 
screen easily. There are LOTS of complex things that go into 
drawing to a computer screen, and openFrameworks does a lot 
of the hard stuff for you and let’s you write really simple code 
that will get some amazing results. If we want to have some 
animations in openFrameworks we are going to need to do 3 
things, we’ll need to set up all the stuff we want to draw, we 
need to update what we’re drawing between frames and we 
need to actually draw the frames. Lucky for us this is exactly the 
structure of our program that is presented here! Let’s look 
through this file one line at a time just like we did the main.cpp 
file. The first line is a familiar one:

#include ‘ofApp.h’ 

Worksheet Three – How It's Made



33

This means that at the beginning of this file we’re adding a 
table of contents of all the operations this file can perform.

The next line:

//---------------------------------------------------------

is another comment which the computer does not read.

The next line is another function declaration, just like main!

void ofApp::setup(){

Here we’re going to learn a new word ‘void’ which is the 
‘return type’ of this function the same way ‘int’ was the return 
type of our main function. Here void means nothing, i.e the 
function returns nothing. Easy! Can you guess the name of this 
function? The same way ‘main’ was the name of the last 
function ‘ofApp::setup’ is the name of this function, However 
we’ll just call it ‘setup’ Then we see the same pair of parentheses 
as before denoting is as a function, then the opening and 
closing curly braces. It is inside these curly braces that we’ll 
write all the functionality that we want to have happen when 
we execute our setup function, but for now it’s empty so if we 
execute ‘setup’ nothing will happen. 

Have a look at the next two functions in this file, they are 
names ‘update’ and ‘draw’... how coincidental just the structure 
we wanted in the first place! This is how openFrameworks 
works, it has 3 primary functions, ‘setup’, ‘update’ and ‘draw’ 
built in and when yo start your app running it runs them in this 
order: setup -> update -> draw -> update -> draw -> update -> 
draw -> update -> draw ... on forever! There are a bunch more 
functions below that allow you to do thinks when a key is 
pressed or when the mouse is moved etc. but for now we’ll  
just use the first three functions.

So now that we understand the basics of openFrameworks  
and a little bit about programming and functions we’re ready 
to build our very first app. The first thing we’ll do with 
openFrameworks is something we’ve spoken a bit about before, 
and it’s drawing a circle! As I mentioned before there are lots 
of complexities that come into play when you’re drawing 
something on the screen, but openFrameworks gets rid of all  
of these and packages them up in nice, simple functions.

The function we’re looking for is called: ‘ofCircle’ this function, 
when called draws a circle at a given x and y position with a 

Worksheet Three – How It's Made



34

given radius. Since this will be the first time we call a function 
let’s walk through it slowly. We’ll want to write our line of code 
in the ‘draw’ function because we’ll want to ‘draw’ it every frame! 
So in the ‘draw’ function we’ll need to write our line of code in 
between ther two curly braces on it’s own line. First we write 
the name of our function ‘ofCircle()’ followed by the 
parantheses. Bewteen the parantheses we’ll list the parameters 
that we want our circle to be drawn with separated by commas. 
To define a circle we need 3 numbers: an ‘x’ position, a ‘y’ 
position and a ‘radius’ (in that order). All our units are pixels 
and the origin of our coordinate system starts at the top left of 
the window with the positive x direction towards the right and 
the positive y direction towards the bottom of the window. 

Let’s start with a circle at the point (100, 100) so 100 pixels to 
the left, and 100 pixels down and let’s say we want the radius 
of our circle to be 50 pixels. The radius of a circle is the length 
of a straight line from the center to the edge. To do this we will 
add the three parameter to our function call so the line will 
look like this: ‘ofCircle(100, 100, 50)’ The one last thing we’re 
forgetting is a semi-colon at the end. At the end of each line of 
executing code we need to put a semi-colon to tell the 
computer that that line of code is over. So the final line will look 
like this:

ofCircle(100, 100, 50);

Let’s give that a try! Navigate to the folder entitled myFirstApp 
in the Terminal and execute the command ‘make’ to compile the 
new code! Then once it’s finished compiling type ‘make run’ and 
you should see a white circle near the top left corner of your oF 

Worksheet Three – How It's Made



35

window! So that was pretty easy, there are lots of things we 
can do with openFrameworks that will teach us a bit more about 
computer programming now that we have this circle. In the next 
few sections we’ll make the circle move, bounce and change it’s 
color whcih will introduce a few more concepts of programming!

Changing The Circle’s Color:

A common concept in programming is that of a ‘State Engine’.  
A state engine is a system wherein you can change certain 
settings which are saved for later use. One such setting we may 
want to change is the color we are drawing the circle in. We 
havn’t told the app anything about what color we want to 
draw the circle with so it’s defaulted to white but if we wanted 
to tell it what color to draw in all we’d need to do is set the 
drawing color using the function ‘ofSetColor();’ This function 
takes 3 parameters which in this case are numbers between  
0 and 255 representing how red, green and blue we want our 
color to be. A value of 0 means none of that color while a 
value of 255 means the maximum amount of that color. If we 
add the line: ‘ofSetColor(255, 0, 0);’ Inside the draw function 
before we draw our circle we’re saying ‘let’s set the color to 
255 red, 0 green and 0 blue’ or ‘everything I draw from here 
on our should be 100% red 0% green and 0% blue until I 
change the color setting again’. Let’s give it a try, add the line 
‘ofSetColor(255, 0, 0); just above the ofDrawCircle(100, 
100, 50);’ line but still inside the ‘draw()’ function. Compile the 
project again using the ‘make’ command and then use make  
run to run it and tahdah! a red circle! Have a play around with 
some other colors by changing the numbers you give the 
ofSetColor function. You can also change the background color 
by using the function ‘ofBackground()’ and passing it 3 numbers 
for red, green and blue aswell.

Worksheet Three – How It's Made



36

Making The Circle Move:

So we’ve had a lot of fun with our static circle but if we could 
get it to move around that would be even cooler. Let’s say we 
want to move our ball downwards in a striaght line. This means 
that each frame we want to change the position of the ball by 
some amount in the positive y direction. All we can do is tell the 
ball where we want to draw it next so we’ll need to save the 
position of the ball at any given moment using a ‘variable’  
a variable is a letter or word one can put in place of another 
value that stores the value for later use. To do this we’ll need  
to open up the ofApp.h file and add our new variable to the 
table of contents of our program. Scroll to the bottom of the 
page and before the line that reads ‘};’ insert a line that reads 
‘int circleY;’. This line is called a variable declaration and it 
tells the computer that we are going to be saving a value with 
integer type (a whole number) under the name ‘circleY’. Save 
that file and re-open the ofApp.cpp file. Inside the ‘setup()’ 
function we’ll add set the value of circleY to an initial value by 
adding the line: ‘circleY = 100;’. Here we’re using the = sign  
in a way that is common in computing. ‘=’ in C++ and C is the 
‘assignment operator’ which means that it assigns values to 
variables. Here is stores the value 100 which we want to be the 
initial value of our circles Y position inside the variable ‘circleY’, 
now if we ever use the variable ‘circleY’ in place of a number it 
will be just like using the value 100! That is in fact exactly what 
we will do, let’s replace the second ‘100’ in ‘ofCircle’ with the 
variable name: ‘circleY’. 

Let’s compile and run the app again. There won’t be a change 
because we’ve just replaced the value 100 with a variable with 
the same value! What we can do now is change the value of 
‘circleY’ and keep it saved each frame. In our update function 
we can write the following line: ‘circleY = circleY + 1;’. Now 
what we’re doing is setting the value of circleY to be itself plus  
1 pixel just before the draw the circle each time. Let’s compile 
and run that and see what happens. Amazing! we’ve got a 
moving circle! If you let it run for a little while you may notice 
one issue and that’s that the circle disappears off the bottom  
of the screen never to be seen again! This is because when it 
reaches the bottom we keep incrementing the variable making 
the y position of the circle larger and larger but the screen in 
only so large so we can’t see it when the y position gets  
too large!

Worksheet Three – How It's Made



37

Making The Circle Come Back:

Let’s make the circle loop around the window like it would if it 
were in Pac-Man so that is always stays on the screen. To do 
this we’ll want to check when the position of the circle is equal 
to the height of the window and then set the value back to the 
top of the window. To do this we’ll use what is known in 
programming as a ‘conditional statement’. We want to check if 
a certain condition is met (ie if the circle is at the bottom of the 
screen) and execute a command only if that condition is met.  
To do this we’ll use an ‘if’ statement. Just after the line: 
 ‘circleY = circleY + 1;’ let’s add the following bit of code:

if(circleY > ofGetHeight() + 50) {

circleY = -50;

}

This is a bit tricky to let’s tackle it on piece at a time. The if 
statement here consists of the word if and then everything in 
the enclosing parentheses after it: ‘if(circleY > ofGetHeight() 
+ 50)’ this can be read almost like normal English: ‘if the variable 
circleY has a value that is greater than the height of the screen 
plus 50 pixels...’ The stuff inside the parentheses is a comparison 
between two numbers, the value contained in ‘circleY’ and 
value returned by the function ‘ofGetHeight()’ (a built in 
openFrameworks function that tells you the height of the screen) 
plus 50 more pixels to account for the radius of the circle. If it  
is true that the value contained in ‘circleY’ is larger than the 
value returned by ‘ofGetHeight() + 50’ then the computer 
executes the code between the curly braces, i.e. it sets circleY  
to by -50 pixels. Let’s compile and run this again and you 
should see the smooth motion of the circle. Pretty cool huh!? 
Can you make the circle move faster or slower? how anout 
making it change it’s color when it loops around? What about 
making it move in the x-direction aswell or allowing it to 
change directions when the mouse is pressed?

These are all things that you can do pretty simply with 
openFrameworks. check out the website openFrameworks.cc 
and click on ‘documentation’ to see a list of all the functions 
that openFrameworks offers.

Worksheet Three – How It's Made



38

Worksheet Four
Extending Somatopia:  
An Intro To Object Oriented 
Programming



39

Now that you've gotten an intro to openFrameworks we're 
going to dive a bit deeper into the code by adding our own 
interaction to the 5 existing ones in Somatopia! In this section 
we're going to get a bit more advanced and it will assume that 
you've played around with openFrameworks a bit, maybe 
made some of your own basic projects and now you're ready 
to jump in on something a little more advanced.

The main topics in this worksheet will be as follows:
1. Using Addons With openFrameworks
2. Using Object Oriented Programming With C++

These are all important topics for programming with 
openFrameworks and programming in general. Let's start  
by talking about addons.

Using Addons With openFrameworks:

One of the dirty secrets of programming is that programmers,  
in general, are very lazy people. We don't want to make extra 
work for ourselves when we don't have to, in fact that's sort of 
the whole reason computing got started in the first place! Lets 
get a computer to do all the tedious tasks like calculating 
where to draw the ball next so you don't have to!

Because of this programmers have built a myriad of tools to get 
around doing real work and one such tool in openFrameworks 
is called "addons". Addons are a way of including other peoples 
code in your own projects so you don't need to reinvent the 
wheel every time you go to do a project. Say you want to build 
a project which is a magic mirror in which people can look and 
become happy. We want to draw a live camera feed of people 
looking at our mirror and draw a smiley face over the faces of 
people who aren't smiling. Without addons this would be quite 
the challenge, you'd need to firstly figure out a way of looking 
at an image a determining which parts of the image are 
peoples faces (no mean feat) then you'd also need to develop 
an algorithm that allows the computer to determine whether or 
not those people are smiling. This could take a lot of work and 
you may find yourself thinking that you should perhaps go back 
to your simple bouncing ball project but the good news is 
some very clever people have already figured out how to do 
both of these things long before you ever sat down to code 
your project!

Not only have these people figured out all of these tricky 
algorithms already, but they've also made much of their code 
available through "addons" which are basically chunks of other 

Worksheet Four – Using Addons With openFrameworks



40

peoples code that you can use for your own projects because 
these clever and generous people have "open sourced"  
(i.e. released to the public for free) their work. With respect to 
the smiling project I described above there is a great addon 
called ofxSmile created by backercp which you can check out  
if interested but for now let's talk about the addons we've used 
to build Somatopia.

We use 5 addons for Somatopia which I'll list below with a brief 
description:

ofxJSON – This addon allows us to read files of the type .json 
which are text files that hold data. You may remember the 
Users.json file which we modified earlier to include more users 
in our Sound wheel interaction and now you know that this is 
the addon that allows us to read that file!

ofxOpenCv, ofxCv and ofxCvPiCam – This set of three addons 
allows us to use code in "openCV" libraries which stands for 

"Open Computer Vision". These are the addons which we use to 
do analysis of images which allows us to do camera interaction 
in the interactions Flow and Space. We'll talk about these a  
bit later.

ofxStateMachine – This addon allows us to structure our App in 
a such a way that we can have multiple interactions which we 
switch between. We've set up our app such that each 
interaction is a "State" and the state machine allows us to 
switch between these states in a clean way.

Worksheet Four – Using Addons With openFrameworks



41

To include an addon in your own project is very straightforward 
on a raspberry pi. All you need to do is download the addon 
from the internet (many addons have their source code 
available on GitHub) and place it's folder in the "addons" folder. 

Check out http://ofxaddons.com/ for a huge list of all the 
addons that openFrameworks has to offer (there are even more 
non-official ones floating around GitHub too but I think you'll 
find this is a good place to start)! Once it's in your "addons" 
folder you'll be able to add any addon within that folder to 
your project by adding the name of the folder at the bottom  
of the addons.make file within your project and following the 
instructions provided by the author of the addon. Sometimes 
these instructions are very straightforward and usually just 
involve adding a line to #include the addons .h file at the top 
of your ofApp.h file and sometimes you need to do a few more 
things like download additional libraries etc. depending upon 
the complexity of the addon.

We won't need any additional addons to add our new 
interaction but it will be important to understand that they exist 
and how we're using them in our code. To add an interaction 
we'll need to add a new "State" to our state machine. Let's 
quickly have a look at our testApp.cpp file. We'll gloss over 
some of the details here because you're already a rocking 
openFrameworks coder but quickly we'll have a look at the 
structure of the code. All your openFrameworks apps have this 
file (maybe it's called ofApp.cpp) and they all have this setup 
function at the top. What we're doing in our setup function is 
setting up our state machine. You can think of each of our 
interactions as individual openFrameworks apps with their own 
setup, update and draw functions as well as other functions like 
mousePressed stateEnter and stateExit. We use our state 
machine addon to connect all of these apps together and 
swap between them easily. If we scroll down to line 100 we'll 
see when we add all of these states:

stateMachine.addState<SplashState>();

stateMachine.addState<OptionsState>();

stateMachine.addState<FlowState>();

stateMachine.addState<CRState>();

stateMachine.addState<SpaceState>();

stateMachine.addState<SoundWheelState>();

stateMachine.addState<MirrorState>();

Splash state is the main page with all the buttons on it, Options 
state is the option page found in the top left corner, Flow state 
is out flow interaction etc. To add our own state we'll need to 

Worksheet Four – Using Addons With openFrameworks



42

add it here. We've already made a state for you to add yourself 
called "Rhythm" which you'll find by looking in the src folder 
there is a Rhythm.cpp and a Rhythm.h file as well as a Ball.cpp 
and a Ball.h file. To add this state to our app we'll need to 
add a line here that looks like this:

stateMachine.addState<RhythmState>();

The next step we'll need to take is connecting the RhythmState.h 
file with a #include line in the testApp.h file. Now we knew this 
was coming and we've cheated a bit by adding it to the .h file 
already so you don't need to do it yourself.

Now if we compiled and ran our app our Rhythm state would 
be in the app but we'd have no way to access it! We'll need  
to add a button to access it in our Spash State. Let's open the 
SplashState.h file and you'll see where we initialize all of our 
"Statebuttons" which are the buttons on the splash page which 
allow us to jump to any interaction we want. Now, we're getting 
dangerously close here to discussing something called "Object 
Oriented Programming" and we're not quite ready to do that 
yet (but we will in a moment!) for now look at how we declared 
the intergers "offSet", "buttonWidth" and "buttonHeight".  

This should be totally familiar to you, you declare 3 integers 
which we'll give values to later. In object oriented programming 
we can do the same kind of thing but with any object we 
create ourselves, not just integers, floating point values strings 
etc. but also stuff like "bouncing balls", "states" (like in our state 
machine) and even "StateButtons" as we have here. You'll see 
we've commented out one of the lines "StateButton rhythm;" 
which we'll want to comment back in now! Now have a look at 
our splashState.cpp file and you'll see some more commented 
out lines, line 19, 27, 49 - 51 and 88 - 91. These are the lines 
that control initializing, drawing and allowing us to interact with 
our new state button. Once these lines are all un-commented 
go ahead and compile the code and run it.

And voila! Try clicking on our new rhythm button and you'll see 
a red ball bouncing around the screen which should bounce 
off of objects in the frame! The ball will behave strangely right 
now because the background is not set properly but we can fix 
that. Leave the rhythm state by pressing the right mouse button 
and go to the options state. You'll see in the bottom right there 
is a background image in black and white. If you place the RPi 
and the camera in a place where they will not move and move 
out of a frame pressing the space bar will change this 
background image to the image on the left (the current camera 

Worksheet Four – Using Addons With openFrameworks



43

feed). Now if you re-enter the frame and return to the rhythm 
state you'll find the ball does indeed bounch off of you and the 
sides of the screen! Pretty cool huh?

Using Object Oriented Programming With C++

Now we've spoken a bit about state machines, added our new 
mode and introduced the idea of object oriented programming 
very briefly. Now we're going to dive into the interaction that 
we just added to talk a bit more about object oriented 
programming. Let me give a quick theoretical introduction to 
what object oriented programming is to a practical 
programmer such as myself.

Object oriented programming is more or less a way of 
organizing programs in a lucid and modular way. The idea is 
simple, let's start with the idea of an integer. An integer is a 
data type in C and C++ that refers to a piece of data stored on 
4 bytes of data which can be interpreted as a number between 
–32767 and 32767. There are operators for integers, you can 
add them together, you can subtract them, you can assign 
them values you can even divide and multiply them. There are 
lots of data types native to C++ including ints, floats, doubles, 
longs, bools, strings, chars, the list goes on. While these basic 
data types are excellent for holding values like numbers or 
pieces of text quite often in computing we want to store more 
information than just a simple number. 

We may, in a very basic example want to store the value of a  
2 dimensional vector. A vector is defined as an object that has 
both direction and magnitude, it is essentially an arrow that 
points a certain distance in a certain direction. To define a 
vector in euclidean space all we need is two integers that 
describe where it is in the two dimensions, we call these the  
x value and the y value. You may remember from the previous 
worksheet that we drew a circle which moved around the 
screen and we defined it's position using two integers circleX 
and circleY. Those two number constitute the vector that starts 
at the top left hand corner of the screen and points to the 
position of the circle.

Now using a pair of integers is all well and good for one circle, 
but let's say we wanted to have 100 circles, then suddenly we'd 
need circleX1, circleY1, circleX2, circleY2, circleX3... and on 
and on and every time we wanted to draw a circle in it's 
correct position we'd have to pick the correct integers. Instead, 
we'd rather bundle that pair of of integers that define the 
circles position together into a new object called a vector.  

Worksheet Four – Using Object Oriented Programming With C++



44

That way all we need is position1, position2, position3... and we 
can easily keep track of our list. To do this we'll use what's 
called a class. 

The class is a tool in C++ that let's you bundle together different 
data types and keep them together. Let's call our class 

"myVector" so classing it would look like this:

class myVector {

public:

int x;

int y;

};

That's it! It's pretty simpe the only thing to note is the line 
"public:", in C++ you need to tell a program whether it is 
allowed to directly access fields in your class. Fields are by 
default private which means no other classes can touch them 
but we don't really mind making these fields public so we will. 
Now we can declare a new vector just the same way we'd 
declare an integer:

myVector circlePosition;

To set the values of the x and y we use '.' notation which allows 
us to access the "fields" or data types within the classes, to set 
the circle position to (50, 100) we would do the following:

circlePosition.x = 50;

circlePosition.y = 100;

now instead of having two lists, one of all the x values and one 
of all the y values of say 100 circles we can just have a single 
list of all the position of the circles and access the x and y 
values using '.' notation.

This is a great start, but we may want to create even cooler 
classes. If we can put two integers together to create a vector, 
why not put a bunch of numbers together to make a dog?  
We can do this in just the same way, let's make a class called 

"dog" that has several fields, dogs have names, a number of legs, 
a maximum running speed, perhaps they have a level of 
hunger which indicates how much they want to eat. Maybe 
they even have a color and a sensitivity of smell, all of this is 
possible with a class:

class dog {

public:

Worksheet Four – Using Object Oriented Programming With C++



45

int numLegs;

string name;

float hungerLevel;

float maxRunningSpeed;

double smellSensitivity;

ofColor color;

};

So now we can store not only simple objects like vectors but 
much more complex objects like dogs! Now what is we also 
want our dog to be able to do things? It's all well and good to 
have a dog that has a hunger level but if he can't eat how can 
he ever change his hunger level? For this we have things called 
methods. Methods are functions that can be called on a 
particular class. So if we wanted our dog to be able to eat we 
would modify our dog class by adding a method declaration 
inside it like so:

class dog {

public:

int numLegs;

string name;

float hungerLevel;

float maxRunningSpeed;

double smellSensitivity;

ofColor color;

void eat() {

hungerLevel++;

if(hungerLevel > 1.0) hungerLevel == 1.0;

}

};

Now our dog can eat! we can use the method the same way 
we accessed the fields so if we initialize a dog:

dog Sparky;

// initialize all the fields of sparky our dog

Sparky.eat();

This will call the functionality of our dog to eat!

Super cool right? This is object oriented programming at it's 
most simple. You can have a look in the source code for the  
the rhythm state we just added and see this kind of coding in 
action. In this case we define a new class called "Ball" which 
contains all the code we want our bouncing ball to execute it 
includes fields that hold it position and color and methods that 
allow it to bounce off the walls and off of people in the image.

Worksheet Four – Using Object Oriented Programming With C++



46 Worksheet Four – Using Object Oriented Programming With C++

Object Oriented Programming has a lot of further topics but  
it's really a great way to write programs and you'll find that it 
helps you organize your mind as well! It also means that you can 
pick up bits of old code you've written and reuse them just like 
addons (in fact most every addon is just someone elses class 
that you get to use!) even the entire app that we're building is 
itself an instance of an "ofApp" class! Isn't that something!



47

Thank You!

Somatopia has been funded through the 
Raspberry Pi Foundation.

We would also like to thank Ashgrove 
School, Cardiff and Trinity Fields School, 
Caerphilly for their participation.


